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The study of a thin, incompressible Newtonian fluid layer trapped between two almost parallel, 
sliding surfaces has been actively pursued in the last four decades. This subject includes lubrica- 
tion applications such as slider bearings or the sealing of nonpressurized fluids with shaft seals. 
In the present work, the flow of lubricant fluid through a microgap formed beween a synthetic 
seal and a rotary shaft is first analyzed using scaling arguments and then numerically. The study 
is initially carried out assuming that a "small-gap" parameter ~ attains an extreme value in the Na- 
vier-Stokes equations. The precise meaning of small gap is achieved by the particular limit 5 = 0, 
which, within the bounds of the hypotheses, predicts transport of lubricant through the sealed 
area by centrifugal instabilities. The incidence of temperature variations attributable to viscous 
dissipation of mechanical energy in the fluid properties is also investigated. Numerical results 
obtained with the finite element method are presented. In particular, the influence of inflow and 
outflow boundary conditions and their impact in the simulated flow are discussed. 
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I n t r o d u c t i o n  

This paper deals with a type of synthetic seal, commonly used in 
automobiles, that operates under all weather conditions. These 
elastomeric devices seal slightly pressurized oil trapped inside the 
ball bearings container keeping the lubricant flee of impurities 
from the outside (Figure 1). The seal, rigidly bonded to the oil 
reservoir, is stationary and presents a narrow section that slides 
over the moving surface of the rotary shaft. When the seal is 
assembled over the shaft, the lip edge is distorted, and a dry contact 
surface is formed. However, Jagger (1957) found that under 
approximate steady-state conditions, the contact lip runs over a 
very thin fluid film that separates the seal from the shafl. Since 
then, researchers have been trying to explain the generation of the 
hydrodynamic force able to sustain a gap between the two bodies, 
and the mechanisms that prevent the fluid from leaking through. 
Jagger put forward the idea that the surface tension of the sealed 
fluid controls leakage by means of a meniscus formed on the air 
side. Years later, Jagger and Walker (1966) proposed that asperities 
acting as microbearing pads were partially responsible for the 
hydrodynamic lift. Kawaham and Hirabayashi (1977) observed that 
a seal leaks when the installation is reversed. Kawahara et aL 
(1980) studied the possible contribution of seal asperities in the 
sealing mechanisms. Lebeck (1986a,b), however, concluded that 
the existing models could not fully explain the sliding motion as 
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commonly observed in experiments. A more recent work showed 
that a properly installed and functional lip seal exhibits a net 
transfer of lubricant from the low-pressure region to the high- 
pressure region (Stakenborg 1988). Salant (1992) claimed that 
microundulations in the lip surface restrict leakage by virtue of a 
"reverse-pumping" process in which fluid is driven from the low- 
to the high-pressure side, but no clear experimental evidence 
supporting these kind of asperities action has yet been reported. 

An alternative line of analysis is given by the so-called 
elastohydrodynamic lubrication theory (EHL). It is known that 
whenever an incompressible fluid is forced to flow between a 
compliant body and a rigid one, the subsequent deformation of the 
elastic body affects the flow field of the viscous lubricant. The 
solution of the interaction between the fluid film and the compliant 
body, therefore, must be sought through an iterative procedure. 
The classical approach is to relate the film thickness to the fluid 
pressure using Hertzlan point contant theory (Oh and Rohde 1977; 
Taylor and O'Callagham 1972; Verstappen and van Groesen 1989). 
Variants of the EHL theory have been applied to rectangular, 
reciprocating elastomeric seals with considerable success (Prati and 
Strozzi 1984; Ruskell 1980). However, the large number of 
parameters needed to describe any EHL model for lip seals makes 
the approach difficult to implement (Vionnet 1993). The existence 
of roughness comparable in size to the thickness of  the fluid layer 
certainly complicates any mathematical description of  the problem 
(Salant and Flaherty 1995; Serbetci and Tichy 1991). Part of the 
inlzicate nature of the problem lies in the disparate length scales 
representing the geometry of the real system. Nevertheless, by 
considering a rigid lip seal, it is possible to formulate a one-side 
model based on a proper interpretation of these scales. It will be 
established that this approach provides a deeper understanding of 
the way in which shaft seals work. 
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Figure I Schematic of lip soal for rotary shaft application 

The first stage of tiff.,; study is carried out assuming that a 
"small-gap" parameter ~ attains an extreme value in the Navier- 
Stokes equations. The precise meaning of small gap is achieved by 
the particular limit ~ = 0  which, within the bounds of the 
hypotheses, predicts transport of lubricant through the sealed area 
by centrifugal instabilities. In the next section, the small-gap 
equations are obtained u,;ing a rather simple order-of-magnitude 
analysis. The effect of the temperature distribution on the fluid 
properties and on the velocity field in the contact area is also 
investigated. Numerical results obtained with the penalty function 
approximation in the finite element method are presented. In 
particular, the influence of inflow and outflow boundary condi- 
tions, and their impact in the simulated flow are discussed. 

A n a l y t i c a l  m o d e l  

The oil-film is considered already formed under normal working 
conditions. Neither merhanical contact between the sealing 
surfaces nor elastic distortion of  the outer elastic seal is allowed. 
The thin viscous liquid lffyer is assumed to be bounded above by a 
smooth surface and below by a perfectly rounded shaft. Edge 
effects, such as the meniscus experimentally observed on the air 
side, are also ignored. Despite the fact that the film within the gap 

is very thin, it is assumed to be thick enough to conform to the 
continuum hypothesis of the liquid. There is no local rupture of the 
film, such as cavitation or dry spots in the contact area, and the 
layer consists of an incompressible Newtonian fluid with variable 
properties. 

For the present problem, the analysis of the fluid motion 
involves, roughly speaking, three disparate length scales (Figure 1); 
namely, the radius R of the shaft [0(0.04 m)], the much smaller 
thickness ho of the fluid in the contact area [0(10 #In)], and an 
intermediate length b characterizing the axial extent of the contact 
region [0(200 #m)]. Regardless of the flow structure within the 
gap, the velocity field in the neighboring regions is clearly affected 
by the different size of the approaching channels. Therefore, for a 
fluid film of average thickness d and characteristic viscosity Vo, 
only one velocity scale can be formed in the outer regions; namely, 
vdd. The other scale is clearly the sliding velocity DR, where fl  is 
the angular velocity of the rotary shaft. Denoting the time with t, 
the dynamic pressure with p*, the velocity components with 
(uz, u,, uo) in the directions (z, r, 0), respectively, and the 
temperature with T, the flow field equations (see Appendix) are 
rescaled by writing the following: 

(x,y) --> \ d '  d ) ' z --~ d--- £ , p "-~ PV2o 

T-Too ( u , v , w ) "~  ( d u z ,  d u r , - - ~  q ~ - - + -  (1) 
\Vo Vo ~=lt/ ' To - Too 

The fluid properties are density p, absolute viscosity # * =  #*(T), 
specific heat c = c(T), and thermal conductivity k=/¢(7), with the 
understanding that an asterisk denotes dimensional quantifies. The 
characteristic values are some reference temperature To, a sink 
temperature Too deep inside the solid, and a reference viscosity 
#o* = #*(To) so that #o* = pro. It can be seen that, in the limit ~ = 
d/R --~ O, the equations of motion reduce to the following: 

v .  u = 0 (2) 

(8, + u. V)u = - 0 w  + v .  ~Vu + O~u. v ~  (3) 

(Or + u . V)v = -&jp + V . ltVv + 8yU . V# + Taw 2 (4) 
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Brinkman number, = P,~;c 
width of the seal lip 
specific heat of the fluid 
average fluid thickness outside the contact 
region 
thermal conductivity of the fluid 
convection heat transfer coefficient 
film thic~mess within the gap 
Order of magnitude, on the order of 
dimensional fluid pressure 
dimensionless fluid pressure 
radius of the shaft 
fluid temperature 
reference temperature 
sink temperature 
dimensional time 
dimensional fluid velocity components in the 
cylindri~tl coordinates, z, r, 0 
dimensionless fluid velocity components in the 
dimensionless coordinates, x, y, 0 
weight or test function in the method of the 
weighted residuals 
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Eckert number 
Nusselt number, = hd/k 
Prandtl number 
Reynolds number, =Da~ho/vo 
Taylor number 

small-gap parameter, =d/R 
penalty parameter, = l0 s 
dimensional fluid viscosity 
dimensionless fluid viscosity 
dimensional kinematic viscosity of the fluid at the 
reference temperature 
fluid density, constant 
dimensionless stress tensor for a Newtonian fluid 
dimensionless time 
dimensionless temperature 
Galerkin basis function with compact support on 
node i 
angular velocity of the rotary shaft 
interior of the computational domain and &o its 
boundary 
partial derivative with respect to x, = 
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(a~ + u .  V)w = V. uVw (5) 

(0, + u.  V)gb = V. ~r  Vq~ + Ec#[(axw) 2 + (OyW) 2] (6) 

Above, u----(u, v) is the velocity vector and V = (0x, 0y) is the 
gradient operator, both defined in the axial plane x, y. The relevant 
parameters here are the Taylor number Ta, the Prandtl number P,, 
the Eckert number Ec, and the relative viscosity p defined as 
follows: 

~2Rd3 _ pcvo , Ec = (~R)2 /~* (7) 
ra - -  V--~o ' l"r : k ¢(To - Too) '  # U* 

The above system of equations is a generalization of the so-called 
small-gap equations, widely used in the study of the stability of 
axisymmetric Taylor-Couette flows (Chandrasekhar 1961; Hall 
1975). Note that although curvature effects are almost completely 
neglected, they are retained through the centrifugal term by holding 
the Taylor number fixed as 5 -*  O. It follows that a rigid seal 
separated from a rotary shaft by a thin lubricating film is subject to 
centrifugal instabilities on either side of the contact area; in- 
stabilities that, in turn, may drive a secondary flow across the gap. 

B o u n d a r y  c o n d i t i o n s  

The computational domain is depicted in Figure 2. The size of the 
gap ho in the contact surface (see Figure 1) is assumed to be equal 
to 10/~m. The width of the seal lip is set equal to 200/an and is 
used as the characteristic length d. The two angles of approach are 
60 ° from the oil side and 12 ° from the air side. The boundary 
conditions are the usual: no slip and no mass penetration at solid 
walls. That is, u = v = 0, and w = 1 at the lower boundary y = 0, 
which represents the outer surface of the rotating shaft, and 
u = v = w = O  at the upper boundary, which is stationary. The 
boundary conditions for the temperature are those indicated in 
Figure 2. At the artificial boundaries, on both sides of the contact 
region, the free-boundary condition (FBC) proposed by Papanas- 
tasiou et al. (1992) is used. Essentially, the FBC retains the 
contribution of the line integrals along the open boundaries in the 
discretized equations of the weak form. For comparison purposes, 
the stress-free or natural boundary condition (NBC) is also 
employed. Both open boundary conditions (OBC) are exhaustively 
analyzed in the author's thesis for a variety of situations exploiting 
the analogy between a homogeneous rotating fluid and a 
nonrotating, stratified fluid (Chandrasekhar 1961; Veronis 1967). 
This subject is still an active field of research (Gresho and Sani 
1990), but additional details can be found in the works of Sani and 
Gresho (1994) and Heinrich and Vionnet (1995). The natural 
boundary condition a, = 0 is used in the weak form of Equations 5 
and 6. 

Fin i te  e l e m e n t  f o r m u l a t i o n  

The numerical solution of Equations 2-6 is based on the Galerkin 
formulation of the method of weighted residuals using the 
primitive variable form of the Navier-Stokes equations. The weak 
form of the governing equations is first expressed in Cartesian 
tensor notation as follows: 

• a ~  ] 

W 0w do, 

= Lo W# ~---axi nids (9) 

1 owoO] Jc.o[W(~t .-[-uj~j)@ pr"~j~j j do, 
(10) 

~w0w 

where n = ni is the unit normal vector pointing outward from the 
boundary &o of the domain o,, W,.=(Wb W2) and Ware weighting 
functions, u = ui is the velocity vector with u, v components in 
x =x~ directions, 5q is the Kronecker delta, and %. is the stress 
tensor for a Newtonian fluid given by the following: 

/au~ auj~ 
o" U ---- -p6/j + #~k~ j + ~ i )  (11) 

For a partition of the domain into Are finite elements and N nodes, 
the dependent variables u, v, and ~ are now expanded in the 
standard Galerkin basis functions 

{~of(x) l~U_l 
using bilinear quadrilateral elements. The dynamic pressure is 
eliminated from the problem, except at the boundaries, by 
penalizing the incompressibility constraint with the pseudoeon- 
stitutive relation (Hughes et al. 1979) 

0ui 
p = - 2 ~ / /  (12) 

All terms of the weak form of the governing equations are 
evaluated with full Gaussian quadrature, except the penalty term 
where selective reduced integration is employed (Carey and Oden 
1986). The weighting functions are set equal to the basis function 
with the exception of the convective terms, where perturbed 

b.$=b.w=0 
14 .7  . . . . . . . . .  

b w=O 

O. I 

-11 

Rgure2 

= 0  

u=v=w=O o a.O=O 
i i .w=o 

-5 0 1 20 

u=v=O, w=l, 3.#~+N.O=O 
Computational domain and boundary conditions 
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Petrov-Galerkin function,,; with balancing tensor diffusivity are 
employed (Kelly et al. 1980). The centrifugal acceleration term is 
evaluated using the procedure known as product approximation 
(Christie et al. 1981). For a single connected domain co with 
boundary &o = &op+ ~co~, where ~ p  is the physical part of the 
boundary &o, and &o~ is the artificially defined portion of &o, the 
calculation of the line integral in Equation 8 is carried out using an 
appropriate set of one-dimensional (I-D) functions. The applica- 
tion of the Galerkin method leads to the following semidiscrete 
weighted residuals approximation 

0 li + r,,,, ,,:, i r,,1 = 

o(u,° w 
(14) 

Above, _=u (Ul, u2, .. ., UN), _V = (Vl, v2 . . . .  • VN), W = (W~, WE, 
• ..WN) are the vectors of the unknown nodal velocities, 
~_= (~1,~2 . . . . .  t~N ) is the vector of the unknown nodal 
temperatures, and • = d/dr. The matrices M, Bin. (m, n = 1, 2), D, 
A, and the vectors _c, b~, by, and b~b are given by the following: 

= [ ~oi~o j dco (15) m/j 
J fD 

(16) 

b2lo=3.I~o~-~-.~dco+L#~--~-~dco (17) 

(18) 

&o~ 0tp/ [ #(&Pi&PJ+-~--~ / de.o, i,j= I, ,N aQJ)ij =j~ \~-~- . . .  (19) 

c(u'u)i= k j ( o , t  tp~ +]]-~-u~-) (ujcpJ~-~+vj~PJ~)dc°) u' 

( 2 0 )  

i =  1 . . . . .  N, (21) 

i , k = l  ..... N, (22) 

b~ - ~ Z.. , / /  ' ~ Ox Ox + do wjwt, i = 1 . . . . .  N 
j k LaOJ \ 

(25) 

where k is the coefficient of added diffusion (Brooks and Hughes 
1982) and I1 u II 2 =u .u  is the modulus square of the velocity field. 
The index i in the line integrals of Equations 23 and 24 refers only 
to those nodes falling on the boundary 0mA. 

T i m e - s t e p p i n g  algor i thm 

A simple reordering of the rows and columns of the element 
matrices, performed during the assembly procedure of the finite 
element method, minimizes the half-bandwidth of the stiffness 
matrix with the resulting saving in storage and computing time. 
Therefore, and for computational purposes only, the vector of 
unknown nodal velocities is first reordered as 
u = (ui, vl, u2, v2,,UN, VN). On the other hand, and owing to the 
typical badly conditioned system of ordinary differential equations 
generated by the penalty method, a direct elimination method is 
used for Equations 13-14 (Carey and Oden 1986; Codina 1993). 
Moreover, the disparate size of the geometry under consideration 
may introduce difficulties analogous to those encountered in stiff 
systems. Unconditionally stable implicit methods in combination 
with Newton's linearization algorithm are good candidates for 
nonlinear problems that exhibit stiff behavior (Byme and 
Hindmarsch 1987). Accordingly, Equations 13 and 14 are 
integrated forward in time with the backward-Euler scheme using 
a fixed time step At. 

For every time level tn=nAt, the current value of the 
temperature tb n is used to compute the viscosity #n, the Prandtl 
number ~ ,  ~nd the Eckert number E~. Then, the velocity is 
computed by solving, for each ~¢h iteration, the linear system 

U v + l  ~ -  U v + A H  v = U v - -  J(u ' ) - l f (u  ') (26) 

using a direct solver based on Gaussian elimination for unsym- 
metric banded matrices (Dongarra et al. 1979). Here, Jim = Ofi/Ou~ 
is the Jacobian matrix of the nonlinear vector 

t(U n+l) ~-~ [Mo + AtB(#n)lu n+l + At_e(u ~+1) 
(27) 

- [Mou" + At_b~] 

A convergence tolerance of less than 1% of the relative change 
II Ao ~ II / II u" II is imposed to terminate each full Newton iteration, 

where II u II = ~ uy,j = 1 . . . . .  2N. The dynamic pressure, ap- 
proximated with piecewise constant elements, is computed over 
each element using the weak form of the penalty function 
approximation. The values of the velocity field (u% _w') and the 
pressure p_" are used to form the load vector b_~ ", which contains 
the FBC and the centrifugal acceleration term. Next, w is updated 
via 

{M + At[D(u n+l) + A(#n)]}w n+l = M w n + Atbw_ n (28) 

and finally, the temperature is advanced by solving the following: 

bu'= I&oA ¢Pi[ -pnl -k  ~j:/g(r/lUJ "4- n2vj) ~ ]  ds (23) { M +  AtID(Un+l)'~t-A(~r)]}~___ n+l =M~___ n + Atbn6_(_._W n+l) 

b,, = I + " : ' )  " ~A g°i -pn: J The scheme is repeated until steady state is achieved. In the above 
equations, Mo is the lumped mass matrix of the block 2N x 2N f i e  "1 

+TaXf" / l tpdpk  dZo]w~. (24) matrix defined in Equation (13); B is the 2Nx  2N matrix also 
ZT, LJ~ defined in Equation 13; and b_a = (-~u, b-v) r. 

Int. J. Heat and Fluid Flow, Vol. 16, No. 4, August 1995 257 



Sealing capacity shaft seals: C A. Vionnet 

N u m e r i c a l  e x p e r i m e n t s  a n d  d i s c u s s i o n  

An important parameter for seal designers is the temperature 
developed in the contact area. Experiments have shown that 
beyond a certain temperature that depends upon the thermophysical 
properties of the elastomer, a considerable wear takes place and 
with it, a decrease in seal service life (Stakenborg 1988). For 
temperatures ranging from 20°C to 80°C, the specific heat of a 
standard lubricating oil has a variation of approximately 13%; 
whereas the thermal conductivity has a variation of only 5%. These 
changes are small compared with a viscosity variation of more than 
90% over the same temperature range. Consequently, while the Pr 
and the Ec numbers are held constant during the computations, an 
exponential decrease in viscosity with increasing temperature is 
assumed. On the other hand, the convective heat transfer coefficient 
is a rather complicated function of many variables, and not enough 
experimental information is available to determine its dependence. 
The asymptotic value Nu = 5.385 (Kays and Crawford 1987) could 
be used within the gap where the conditions of insulation and zero 
curvature are consistent with the boundary conditions and the 
small-gap limit proposed in this paper. However, the condition of a 
fully developed temperature profile is not necessarily achieved and, 
even more important, the asymptotic value 5.385 will change with 
the system geometry outside the contact region. In numbers, the 
rate of the convective heat transfer between the solid shaft and the 
fluid is characterized by the ratio Nu/Pr=hd/pcvo, which for 
h~450  W/m2K and p ~ 9 0 0  kg/m 3, is on the order of 10 -3 .  A 
characteristic value Nu = 1 seems, therefore, plausible with the 
range of Prandtl number explored here. A bulk temperature of the 
oil in the sealed region of 40°C is assumed, and is set equal to the 
reference temperature To. The other parameter values used in the 
simulations are Too =20°C, Vo=6.73 x 10 -5 m2/s; c =  1800 J/ 
kg.K; k=0.145 W/m.K, ho= 10/tm; b=200/~m; and 
R = 0.035 m. Note that the Taylor number and the Eckert number, 
both being a function of the angular velocity, are not ind~endent. 
The ratio Ta/Ec is constant and equal to cd3(To - To~)/vo R. 

The flow through the gap is analyzed for a variety of conditions 
with constant and variable viscosity. The geometry and, in 
particular, the extremely small size of the gap impose a severe 
constraint in the numerical simulation. Preliminary computations 
showed the necessity of using mesh grading as the contact region is 
approached from both sides. Transition elements are also employed 
to avoid extremely small elements in the contact area (Vionnet and 
Heinrich 1993a). All results are validated using meshes of different 
sizes to test the influence of the OBC on the numerical solutions. 
The final mesh contains 2,035 nodes and 1,864 bilinear 
quadrilateral elements. The pressure is adjusted at every step in 
such a way that is always zero at the first element (located at 
x = - 11, y = 0), and the line integrals in Equations 24-25 are 
evaluated, as the OBC requires, with values computed on the 
elements located along the outflow boundaries. 

Results of the axial velocity component, the circumferential 
velocity component, and the temperature obtained with the FBC 
for both constant and variable viscosity, are shown in Figure 3. The 
typical parameter values considered for the numerical experiments 
are listed in Table 1. The temperature distribution within the 
microgap is shown for different values of the Brinkman number 
Br = PrEc. A local solution based on the pressure gradients 
obtained numerically is plotted in Figure 3a to show that the flow 
within the gap is, indeed, fully developed when the viscosity is held 
constant (Table 1). For the Prandtl numbers considered here (Table 
2), no major variations are observed in the flow within the gap 
when the viscosity is allowed to vary with temperature (Figures 3d- 
f). Hence, the comparison between the constant viscosity case and 
the variable viscosity case is now restricted to the common values 
Ta = 3, Ec = 0.0017, and P, = 1000. It can be seen from Figure 4 
that the constant properties model (a) predicts a temperature peak 

much higher than the variable properties model (b). The local 
maximum is better appreciated in Figure 5. The overall effect of the 
temperature is to increase the effect of the inertial forces by 
lessening the viscous resistance on the oil side of the contact area. 
As a result, a higher sealing pressure on the air side is induced 
(Figure 6). This shows rather conclusively that sealing is, indeed, a 
dynamic mechanism. This can be appreciated in Figure 7 where 
only the constant viscosity case is shown (the projection of the 
variable viscosity solution differs from that shown in Figure 7 only 
by a stretching factor). The velocity field and stream function 
contours on the air side, obtained when the FBC is employed, are 
shown in Figure 8. Figure 9 shows analogous results for the same 
parameter values when the NBC is used instead. The effect is so 
dramatic as to reverse the direction of the flow within the gap. 
Although the NBC solution suggests leakage, the FBC solution 
indicates that sealing is achieved by pumping oil from the air side, 
where the azimuthal flow is stable, to the oil side where instabilities 
set in (Figure 10). In all cases a typical temperature peak of 
approximately 200°C is obtained for the constant properties model, 
and of 80°C for the variable properties model. It is clear that 
viscous dissipation effects are overestimated when the viscosity is 
held constant during the computation. Stakenborg (1988) estimated 
an approximate upper bound of 90°C for the temperature under 
normal operation. 

Regardless of inteffacial effects on the air side, the boundary 
condition applied here mimics the conditions encountered in 
experiments where the air side is continuously fed with fluid to 
determine the pumping rate. The treatment of the open boundaries 
as described briefly in this work has proved reliable in a variety of 
situations. It is known that the use of the NBC in presence of 
variable body forces leads to erroneous results (Vionnet and 
Heinrich 1993b). On the contrary, the application of the FBC 
achieves a precise balance of forces by keeping the pressure on the 
line integral defined along the boundary of the artificially truncated 
domain. To some extent, this OBC is insensitive to the location of 
the open boundaries (Vionnet 1993). Moreover, it is not hard to 
show that, for 1-D convection-diffusion problems, the FBC is 
equivalent to a radiating boundary able to filter unwelcome 
reflections toward the interior of the computational domain (Sani 
and Gresho 1994, Heinrich and Vionnet 1995). 

Finally, whereas the present small-gap limit yields an axisym- 
metric flow field, the shape of the gap may vary along the 
azimuthal angle 0 in response to the elastic nature of the seal. 
Therefore, it is relevant to impose upper bounds on some of the 
parameters for the limit 6 ~ 0 to be a valid approximation. This 
can be accomplished, as is common practice in fluid mechanics, 
with the help of the solution itself. In the gap region, the numerical 
solution represents a plane Couette flow (Figure 3b and 3e), which, 
after being rescaled with ho instead of d, can be expressed as 
uo = U[1 - (r - R)/ho] where U =  fiR is the sliding velocity of the 
rotary shaft. It follows that a typical order of magnitude of the 
neglected inertia term uoOuo/Os is ~U2/ho. Here, ~t characterizes the 
angle between the two bodies (i.e., ~t = Oho/Os) and s = RO is the arc 
length (Figure I). On the other hand, the viscous force retained in 
the equations of motion, which for the constant properties model is 
voVZuo, can be well estimated by voU/h 2. The small-gap limit is, 
therefore, a consistent approximation to the equations of motion in 
the event the ratio ~ << 1, where Re is the Reynolds number 
based on ho. In the present formulation, both 0t and the product 0~Re, 
sometimes termed the modified Reynolds number, are required to 
be small. These requirements are the well-known limitations 
imposed on the Reynolds lubrication theory. Furthermore, the 
Taylor number written in terms of ho, Ta =6R 2, shows that 
centrifugal effects are indeed negligible within the gap. In contrast, 
the numerical results show that curvature and centrifugal effects are 
the leading mechanisms outside the contact region, where the 
lubrication approximation ceases to be valid. 
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Table I Constant viscosity P, = 1000 

T~ 1 3 5 

Ec 5.5 x 10 - ~ 1.7 x 10 - 3 2.8 x 10 - ~ 
Br 0.55 1.70 2.80 

Ap/Ax 254.2 415.5 556.0 

Table 2 Variable viscosity, T= = 3, Ec = 1.7 × 10 - 3 

P, 500 1000 1500 
B, 0.85 1.70 2.55 

C l o s u r e  

09 

' ' ' 2 . 4 0  

Besides illustrating its simplicity, the appropriateness of the small- 
gap limit in capturing the underlying forces that drive the flow of 
lubricant through the gap of shaft seals has been established. In 
physical terms, the parameters needed m describe the system have 

been reduced to the angular velocity and some temperature 
ditre~ce, or in dimensionless term, to the Taylor number and the 
Prandtl number. 

It was shown that for a small ratio of gap size to shaft radius, the 
motion of the fluid underneath a radial lip seal gives rise to a 
superpositiun of  a secondary flow in the axial plane an a pure 
shearing motion in the azimuthal direction. Furthermore, the small- 
gap limit says that the flow through the gap is totally determined by 
an axial pressure gradient induced by Taylor vortices on the oil 
side, and by a quasihydrostatic pressure distribution on the air side. 
This constitutes a rather simple but remarkable observation, 
considering that the main body of the literature has emphasized 
only the role played by seal asperities on the sealing mechanism. 

Both the free and the stress-free boundary conditions show that 
centrifugal instabilities are an important driving force in the sealing 
mechanisms of shaft seals, even when their predictions are 
contradictory. In particular, special care must be taken with the 
stress-free boundary condition because of its inherent lack of 
reaction to body forces at open boundaries. In contrast, the free 
boundary condition as used in this work indicates that sealing is 
achieved by pumping oil from the air side, where the almost plane 
Couette flow is stable, to the oil side, where Taylor instabilities set 
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Figure 4 Temperature distribution, (a) constant viscosity, (b) variable 
viscosity 

in. The strength of the recirculating cell observed on the air side is 
not enough to reverse the flow direction when thermal effects are 
taken into account. However, a further increase in the Prandtl 
number may, indeed, change the balance of forces, and leakage 
may occur. This and other effects, such as cavitation and interracial 
forces, should be included in future works. 

Appendix 
The Navier-Stokes equations for  a nonisothermal,  incompressible 
Newtonian fluid of uniform density, and written in cylindrical 
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It'gum 5 Temperature contours in the gap region, (a) constant viscosity, 
(b) variable viscosity 
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Figure 6 Pressure contours, (a) constant viscosity, (b) variable viscos- 
ity 
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tigure 7 Pressure distribution for the constant viscosity case 

coordinates w i th  the l ine r = 0 coincident w i th  the shafl axis, are 
(B i rd  et al. 1960) 

Ouz 10(rUr) . 10uo 
¥ + 7 - ~ - ~  + ; - g g  = 0  

au/~ - ) OP* 1 ~(r'crz) 1 ~coz ~Czz 
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Figure 8 Velocity field and stream function contours on the air side 
when the FBC is used at the outf low boundaries, (a) constant viscosity, 
(b) variable viscosity 

where u = (u,, u,, uo) is the velocity vector in the z, r, 0 directions, 
respectively, and grad = (a= an {a0) is the gradient operator. The 
components of  the visco=~ stress tensor are given by the following: 

, au, 
Zrr = 2# -~r 

, / 1  ~uo 

, OUz 
z= = 2# -~- 

\ r  Or \ r / + r ' ~ )  

,/1 au~ aue~ 
• o,-- =. 

0.2[  

i 0 . 1 |  lu'~1=0.0036 

I1 
L.. 0.1 "u:= '0:~ "u'.* ule u:u" 0.1 "u:= '0:~ "u'.* ule u:u" 

' . . . .  

10 15 20 

(a) 

o.2[ 

o.1~ lu-*l=O.02 

oo~~ ~-~ 
0.~ u'.,c O~ 0~4 ' O~ ' b'.d" • . ~  

10 15 20 
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when the NBC is used at the outf low boundaries, (a) constant viscosity, 
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Rgure 10 Constant viscosity solution obtained with the FBC, (a) con- 
tour lines of the azimuthal component of the velocity on the air-side, (b) 
stream function contours 

In absence of  a free surface, the gravitational body force is 
expressed as the gradient of  a scalar quantity, and, therefore, it has 
been included in the pressure gradient term. 
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